Peptide Epimerization Machineries Found in Microorganisms

نویسندگان

  • Yasushi Ogasawara
  • Tohru Dairi
چکیده

D-Amino acid residues have been identified in peptides from a variety of eukaryotes and prokaryotes. In microorganisms, UDP-N-acetylmuramic acid pentapeptide (UDP-MurNAc-L-Ala-D-Glu-meso-diaminopimelate-D-Ala-D-Ala), a unit of peptidoglycan, is a representative. During its biosynthesis, D-Ala and D-Glu are generally supplied by racemases from the corresponding isomers. However, we recently identified a unique unidirectional L-Glu epimerase catalyzing the epimerization of the terminal L-Glu of UDP-MurNAc-L-Ala-L-Glu. Several such enzymes, introducing D-amino acid resides into peptides via epimerization, have been reported to date. This includes a L-Ala-D/L-Glu epimerase, which is possibly used during peptidoglycan degradation. In bacterial primary metabolisms, to the best of our knowledge, these two machineries are the only examples of peptide epimerization. However, a variety of peptides containing D-amino acid residues have been isolated from microorganisms as secondary metabolites. Their biosynthetic mechanisms have been studied and three different peptide epimerization machineries have been reported. The first is non-ribosomal peptide synthetase (NRPS). Excellent studies with dissected modules of gramicidin synthetase and tyrocidine synthetase revealed the reactions of the epimerization domains embedded in the enzymes. The obtained information is still utilized to predict epimerization domains in uncharacterized NRPSs. The second includes the biosynthetic enzymes of lantibiotics, which are ribosome-dependently supplied peptide antibiotics containing polycyclic thioether amino acids (lanthionines). A mechanism for the formation of the D-Ala moiety in lanthionine by two enzymes, dehydratases catalyzing the conversion of L-Ser into dehydroalanine and enzymes catalyzing nucleophilic attack of the thiol of cysteine into dehydroalanine, was clarified. Similarly, the formation of a D-Ala residue by reduction of the dehydroalanine residue was also reported. The last type of machinery includes radical-S-adenosylmethionine (rSAM)-dependent enzymes, which catalyze a variety of radical-mediated chemical transformations. In the biosynthesis of polytheonamide, a marine sponge-derived and ribosome-dependently supplied peptide composed of 48 amino acids, a rSAM enzyme (PoyD) is responsible for unidirectional epimerizations of multiple different amino acids in the precursor peptide. In this review, we briefly summarize the discovery and current mechanistic understanding of these peptide epimerization enzymes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Monomer Isomery in Florine: A Workflow Dedicated to Nonribosomal Peptide Discovery

Nonribosomal peptides represent a large variety of natural active compounds produced by microorganisms. Due to their specific biosynthesis pathway through large assembly lines called NonRibosomal Peptide Synthetases (NRPSs), they often display complex structures with cycles and branches. Moreover they often contain non proteogenic or modified monomers, such as the D-monomers produced by epimeri...

متن کامل

The Use of D-amino Acids in Peptide Design

Proteins and most naturally occurring peptides are composed of amino acids of the L-configuration. Damino acids are found as constituents of natural peptides produced primarily, by microorganisms, using a non-ribosomal mechanism of synthesis. Research in this field dates back to over 60 years ago when Lipmann et al noted the presence of D-amino acids in tyrocidines and gramicidins [1]. Post-tra...

متن کامل

Epimerization-free access to C-terminal cysteine peptide acids, carboxamides, secondary amides, and esters via complimentary strategies† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc03553e

C-Terminal cysteine peptide acids are difficult to access without epimerization of the cysteine astereocenter. Diversification of the C-terminus after solid-phase peptide synthesis poses an even greater challenge because of the proclivity of the cysteine a-stereocenter to undergo deprotonation upon activation of the C-terminal carboxylic acid. We present herein two general strategies to access ...

متن کامل

Homochirality in an early peptide world.

A recently proposed model of non-autocatalytic reactions in dipeptide formation that leads to spontaneous symmetry breaking and homochirality was examined. The model is governed by activation, polymerization, epimerization, and depolymerization of amino acids. Symmetry breaking was determined to result primarily from the different rates of reactions that involve homodimers and heterodimers, i.e...

متن کامل

Identification of Amino Acid Epimerization and Isomerization in Crystallin Proteins by Tandem LC-MS

Post-translational modifications that do not result in a change in mass are particularly difficult to detect by mass spectrometry. For example, isomerization of aspartic acid or epimerization of any chiral residue within a peptide do not lead to mass shifts but can be identified by examination of independently acquired tandem mass spectra or by combination with another technique. For analysis o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018